## Chemistry A

## Advanced Subsidiary GCE

## Mark Scheme for June 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

| Annotation | Meaning |
| :---: | :---: |
| [ [1] | Benefit of doubt given |
| [c]1) | Contradiction |
| * | Incorrect response |
| [-4] | Error carried forward |
| $\square$ | Ignore |
| [0] | Not answered question |
| - | Benefit of doubt not given |
| WT | Power of 10 error |
| $\square$ | Omission mark |
| $\square$ | Rounding error |
| Eir | Error in number of significant figures |
| $\checkmark$ | Correct response |


| Annotation | Meaning |
| :---: | :--- |
| DO NOT ALLOW | Answers which are not worthy of credit |
| IGNORE | Statements which are irrelevant |
| ALLOW | Answers that can be accepted |
| () | Words which are not essential to gain credit |
| ECF | Underlined words must be present in answer to score a mark |
| AW | Error carried forward |
| ORA | Alternative wording |

## Subject-specific Marking Instructions

Annotations should be placed to clearly show where they apply within the body of the text (ie not in margins)
Question $1 \quad$ (c)(ii), (d)
Question 3 (c)(ii)
Question 4
Question 5
(a)(i)
(c)(i)

Question 6
(b)(iii)

All questions where an ECF has been applied.

## Checking additional pages

All the Additional Pages in the examination script must be checked to see if any candidates include any answers.
The only additional page is part of the last question, $\mathbf{6 ( b )}$ (iii).
You must annotate page 20 with an omission mark ^ if the page is blank to show that you have checked this page.

## Generic comments

## ORGANIC STRUCTURES

For a 'structure' or 'structural formula',

- ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure,

- ALLOW bond drawn to C or H ,
eg ALLOW $\mathrm{CH}_{3}-, \mathrm{CH}_{2}-, \mathrm{C}_{3} \mathrm{H}_{7}-$, etc
- ALLOW vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure,

- DO NOT ALLOW formula with horizontal -HO OR
- ALLOW vertical 'bond' to any part of the OH group

For a CHO group shown within a structure,

- DO NOT ALLOW COH

For a 3-D structure,

| - For bond in the plane of paper, a solid line is expected: | $\searrow$ |
| :---: | :---: |
| - For bond out of plane of paper, a solid wedge is expected: | $>$ |
| - For bond into plane of paper, ALLOW: |  |
| - ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge eg: |  |

## NAMES

Names including alkyl groups:

- ALLOW alkanyl, eg ethanyl (ie IGNORE 'an')
- DO NOT ALLOW alkol, eg ethol (ie 'an' is essential)

Names of esters:

- Two words are expected, eg ethyl ethanoate
- ALLOW one word, eg ethylethanoate

Names with multiple numbers and hyphens:
Use of ' e '

- ALLOW superfluous 'e’ , eg propane-1-ol ('e’ is kept if followed by consonant)
- ALLOW absence of 'e', eg propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers:

- ALLOW absence of hyphens, eg propane 1,2 diol

Multiple locant numbers must be clearly separated:

- ALLOW full stops: eg 1.2 OR spaces: 12
- DO NOT ALLOW eg 12

Locant numbers in formula must be correct

- DO NOT ALLOW propan-3-ol

Order of substituents should be alphabetical:

- ALLOW any order (as long as unambiguous), eg 2-chloro-3-bromobutane


## ABBREVIATIONS

van der Waals' forces

- ALLOW vdw forces OR VDW forces (and any combination of upper and lower cases)

| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (a) |  | Because hydrocarbons have different boiling points $\checkmark$ | 1 | ALLOW each fraction / component / substance / molecule / compound / fuel has a different boiling temperatures ALLOW condense at different temperatures ALLOW because van der Waals' forces differ with molecular size <br> IGNORE references to volatility different strength of intermolecular forces is not sufficient |
|  | (b) |  | Any one from: <br> Bio-fuels produce less carbon dioxide (overall) OR petrol or diesel produce more carbon dioxide (overall) <br> Bio-fuels are renewable OR petrol and diesel are nonrenewable <br> Allows crude oil to be used to make other products OR petrochemicals (rather than petrol) OR Save crude oil OR no risk of large scale pollution from exploitation of crude oil | 1 | ASSUME 'they' or 'it' refers to biofuels <br> ALLOW bio-fuels are (more) carbon-neutral OR plants take up the carbon dioxide released during combustion ALLOW lower carbon footprint <br> ALLOW plants are a renewable resource / crude oil nonrenewable resource / bio-diesel is more sustainable / diesel is not sustainable / petrol and diesel are made from a finite resource / petrol and diesel will run out / bio-fuels will not run out <br> ALLOW decrease the need for fossil fuels <br> IGNORE can be used by diesel powered cars with or without any conversion |
|  | (c) | (i) | Idea that carbon-carbon bonds can break anywhere $\checkmark$ | 1 | The answer must refer to carbon-carbon bonds or the carbon chain <br> ALLOW (carbon) chain can break anywhere Bonds can break anywhere is not sufficient |





| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | (e) |  | Correct shape $\checkmark$ <br> Three areas of electron density repel each other $\checkmark$ | 3 | IGNORE any name of shape given <br> ALLOW 115-125 ${ }^{\circ}$ <br> ALLOW even if it is the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ shown on a diagram. <br> ALLOW three or four electron pairs repel OR three or four bonds repel <br> IGNORE does not have any lone pairs <br> DO NOT ALLOW atoms repel / electrons repel <br> DO NOT ALLOW has lone pair which repels more |
|  | (f) | (i) |  | 1 | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) |
|  |  | (ii) |  | 1 | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) <br> ALLOW $\mathrm{CH}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{5}$ groups above or below chain ALLOW bond to ethyl and methyl group to any part of ethyl or methyl group <br> IGNORE any brackets drawn <br> ALLOW two or more repeat units but has to have a whole number of repeat units (ie does not have to be two) <br> 'End bonds' MUST be shown and can be dotted <br> IGNORE $n$ |
|  |  |  | Total | 21 |  |


| Question |  | Answer | Marks | Guidance |  |
| :--- | :--- | :--- | :--- | :---: | :--- |
| 2 | (a) | (i) | $2 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{O}_{2} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \checkmark$ |  | ALLOW molecular formulae OR correct structural OR <br> displayed OR skeletal formula OR mixture of the above (as <br> long as unambiguous) <br> ALLOW correct multiples, including fractions, of this equation <br> IGNORE state symbols |
| DO NOT ALLOW [O] |  |  |  |  |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | (b) | (vi) |  | 1 | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) $\mathrm{eg} \mathrm{CH}_{2} \mathrm{OHCH}_{2} \mathrm{OCH}_{3}$ <br> ALLOW vertical 'bond' to any part of the OH or $\mathrm{OCH}_{3}$ group DO NOT ALLOW formula with horizontal -HO OR OHDO NOT ALLOW formula with horizontal $-\mathrm{CH}_{3} \mathrm{O}$ OR $\mathrm{OCH}_{3}-$ |
|  | (c) |  | Ethane-1,2-diol has more OH groups (than ethanol) <br> Stronger hydrogen bonding (between ethane-1,2-diol molecules) $\checkmark$ | 2 | ALLOW has more hydroxyl groups OR has more hydroxy groups OR has more alcohol groups Ethane-1,2-diol has two OH groups is NOT sufficient but ALLOW ethane-1,2-diol has two OH groups and ethanol has one <br> DO NOT ALLOW it has hydroxide (ions) <br> ALLOW more hydrogen bonds (between ethane-1,2-diol molecules) <br> IGNORE hydrogen bonds with water |
|  | (d) |  | One ester linkage drawn despite the rest of the structure $\checkmark$ <br> Correct structure for example $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OOCCH}_{3} \mathrm{OR}$  | 2 | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) <br> ALLOW ester shown as all the atoms OR as -COOC- OR $-\mathrm{CH}_{2} \mathrm{OOC}-\mathrm{OR}-\mathrm{CH}_{2} \mathrm{OCOC}-$ <br> IGNORE molecular formula |


| Question |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| 2 | (e) | Any two from: | 2 | Mark incorrect answers first <br> - If one incorrect answer maximum of 1 mark <br> - If two incorrect answers award 0 marks <br> ALLOW OH instead of $-\mathrm{O}-\mathrm{H}$ <br> ALLOW vertical 'bond' to any part of the OH <br> DO NOT ALLOW formula with horizontal -HO OR OHbut ALLOW ECF if both displayed formulae are drawn this way <br> ALLOW one mark if two correct structural OR skeletal formula OR mixture of the above (as long as unambiguous) are drawn |
|  |  | Total | 15 |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (a) |  | (equilibrium position shifts) to the left $\checkmark$ <br> (because there are) fewer moles (of gas) on the reactant side <br> OR <br> (there are) more moles (of gas) on product side $\checkmark$ This explanation mark is dependent on the correct shift of the equilibrium | 2 | Note: ALLOW suitable alternatives for 'to left', eg: towards $\mathrm{CH}_{4}$ or $\mathrm{H}_{2} \mathrm{O}$ / towards reactants OR in backward direction OR in reverse direction OR decreases yield of CO or $\mathrm{H}_{2}$ /products <br> ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' <br> ALLOW fewer molecules on reactant side OR smaller volume on the left hand side <br> ALLOW ORA if specified IGNORE responses in terms of rate |
|  | (b) |  | (equilibrium position shifts) to the right $\checkmark$ <br> (because forward) reaction is endothermic <br> OR <br> reverse reaction is exothermic <br> This explanation mark is dependent on the correct shift of the equilibrium | 2 | Note: ALLOW suitable alternatives for 'to right', eg: towards CO or $\mathrm{H}_{2}$ / towards products OR in forward direction OR increases yield of CO or $\mathrm{H}_{2} /$ products OR decreases amount of $\mathrm{CH}_{4}$ or $\mathrm{H}_{2} \mathrm{O} /$ reactants <br> ALLOW 'favours the right', as alternative for 'shifts equilibrium to right' <br> ALLOW reaction takes in heat <br> ALLOW reverse reaction gives out heat <br> ALLOW ORA if specified IGNORE responses in terms of rate |
|  | (c) | (i) | Gives a high rate of reaction OR reaction is fast OR reasonable rate of reaction without shifting equilibrium too much to the left $\checkmark$ | 1 | ALLOW if greater pressure used it increases safety risk ALLOW if greater pressure used it is more expensive ALLOW higher pressure will shift equilibrium position even more to the left <br> It is a compromise on its own is not sufficient but ALLOW compromise between rate and yield OR between rate and safety |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (c) | (ii) | $y$-axis label is '(fraction of or number of) molecules' AND $x$ axis label is 'energy' AND correct curve $\checkmark$ <br> Lowers activation energy $\checkmark$ <br> More molecules with energy above activation energy with a catalyst OR more effective collisions OR more successful collisions $\checkmark$ | 3 | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC <br> Boltzmann distribution - must start at origin and must not end up at 0 on $y$-axis ie must not touch $x$-axis <br> ALLOW particles OR moles as $y$-axis label IGNORE minor point of inflexion in the curve <br> DO NOT ALLOW two curves <br> DO NOT ALLOW atoms but credit atoms if used in a second marking point <br> DO NOT ALLOW enthalpy for $x$-axis label <br> ALLOW this mark from a labelled diagram <br> more collisions per second is not sufficient |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (d) |  | FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 91.2 (\%) award 3 marks <br> theoretical amount of hydrogen $=3.75 \times 10^{7}(\mathrm{~mol}) \checkmark$ actual amount of hydrogen made $=3.42 \times 10^{7}(\mathrm{~mol}) \checkmark$ $\%=91.2 \checkmark$ | 3 | IF there is an alternative answer, check to see if there is any ECF credit possible using working below <br> IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc <br> Answer must have three significant figures <br> ALLOW ECF from incorrect theoretical and actual amounts of hydrogen <br> ALLOW answer that uses grams rather than tonnes where theoretical amount of hydrogen $=37.5(\mathrm{~mol})$ and actual amount of hydrogen $=34.2(\mathrm{~mol})$ <br> ALLOW alternative approach based on the mass of hydrogen rather than the amount of hydrogen Theoretical amount of hydrogen $=3.75 \times 10^{7}(\mathrm{~mol})$ Theoretical mass of hydrogen made $=75$ (tonnes) Percentage $=91.2 \checkmark$ |
|  | (e) | (i) | $\mathrm{CO}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH} \checkmark$ | 1 | ALLOW correct multiples ALLOW $\mathrm{CH}_{4} \mathrm{O}$ IGNORE state symbols |
|  |  | (ii) | Any two from: <br> Carbon monoxide is toxic OR poisonous $\checkmark$ <br> Increases atom economy of the process OR gives 100\% atom economy $\checkmark$ <br> Methanol is a fuel | 2 | IGNORE harmful or dangerous <br> ALLOW uses a waste product OR CO is then a desired product OR CO is no longer a waste product OR reduces amount of waste product <br> ALLOW other uses of methanol eg petrol additive, solvent or organic feedstock |


| Question |  | Answer | Marks | Guidance |
| :---: | :---: | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | (f) | Unsaturated (vegetable) oils <br> OR oils containing C=C bonds $\checkmark$ | 2 | ALLOW unsaturated fats OR unsaturated lipids OR <br> unsaturated ester <br> ALLOW oils become more saturated <br> IGNORE unsaturated compound <br> DO NOT ALLOW unsaturated hydrocarbon |
| (reacted with hydrogen) in the presence of a nickel catalyst |  |  |  |  |
| $\checkmark$ |  |  |  |  |



| Question |  |  | Answer | Garks |  |
| :--- | :---: | :--- | :--- | :---: | :--- |
| $\mathbf{4}$ | (a) | (ii) | $-46\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$ | 1 | DO NOT ALLOW 46 with no sign |
|  |  | (iii) | Any value between +1 to $+249\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$ | 1 | + sign is not needed |
|  |  | (iv) | $+342\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$ | 1 | ALLOW correct multiples |
|  | (b) | (i) | $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2} \checkmark$ |  |  |


| Question |  | Answer | Marks | Guidance |  |
| :---: | :---: | :---: | :--- | :--- | :--- |
| 4 | (b) | (ii) | $\begin{array}{l}\text { CO and NO are adsorbed (onto surface) OR reactants are } \\ \text { adsorbed (onto surface) } \checkmark\end{array}$ | 3 | $\begin{array}{l}\text { ALLOW CO and NO stick onto surface OR CO and NO form } \\ \text { weak attractions to the surface OR gases are adsorbed onto } \\ \text { surface OR gases bond to surface } \\ \text { NOT absorb but allow ecf for deabsorb later on }\end{array}$ |
| weakening of bonds OR chemical reaction OR new bonds |  |  |  |  |  |
| are made OR carbon dioxide and nitrogen are made $\checkmark$ |  |  |  |  |  |$]$| ALLOW lowers activation energy |
| :--- |
| IGNORE alternative pathway |
| Requires less energy is not sufficient |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | (c) | (i) | Any two from: <br> IR (spectroscopy) $\checkmark$ <br> Mass spectrometry $\checkmark$ <br> UV (spectroscopy) $\checkmark$ <br> NMR $\checkmark$ <br> GC $\checkmark$ | 2 | ALLOW mass spec / MS / mass spectroscopy <br> ALLOW atomic absorption / AAS <br> IGNORE satellite imaging or thermal imaging |
|  |  | (ii) | Any one from: <br> Idea that pollution travels (across country) borders OR idea that all countries contribute towards pollution OR Cooperation means that scientists can share ideas OR scientists can warn governments of risk OR world-wide legislation can be introduced OR allows monitoring of pollution in different countries OR richer countries can help poorer countries introduce pollution controls <br> OR One country cannot control pollution unless all countries do $\checkmark$ | 1 | ALLOW some countries produce more pollution than others <br> ALLOW so protocols can be developed |
|  | (d) |  | $\begin{aligned} & \text { Step } 1 \mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2} \checkmark \\ & \text { Step } 2 \mathrm{NO}_{2}+\mathrm{O} \rightarrow \mathrm{NO}+\mathrm{O}_{2} \checkmark \\ & \text { overall } \mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2} \checkmark \end{aligned}$ | 3 |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | (e) | (i) | Reaction gives NO OR reaction gives $\mathrm{NO}_{2}$ OR reaction gives a mixture of oxides OR activation energy too high OR rate of reaction is too slow $\checkmark$ | 1 | ALLOW makes a mixture of oxides/products <br> ALLOW reaction cannot be carried out experimentally <br> ALLOW reaction does not take place <br> nitrogen and oxygen do not react together is not sufficient <br> IGNORE heat loss to surroundings <br> IGNORE reference to bond enthalpy being a mean value |
|  |  | (ii) | FIRST, CHECK THE ANSWER ON ANSWER LINE <br> IF answer $=+82\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks IF answer $=-82\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 1 mark $\begin{aligned} & \Delta H=193-111 \\ & =+82 \end{aligned}$ | 2 | ALLOW 82 <br> ALLOW one mark for -82 <br> ALLOW one mark for +304 / -304 |
|  |  |  | Total | 19 |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (a) |  | FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=\mathbf{- 1 6 2}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks <br> Energy associated with bond breaking $=3354$ OR $(2 \times 805)+(4 \times 436) \checkmark$ <br> Energy associated with bond making $=3516$ OR $(4 \times 415)+(4 \times 464) \checkmark$ <br> Enthalpy change $=-162 \checkmark$ | 3 | IF there is an alternative answer, check to see if there is any ECF credit possible using working below. <br> IF ECF, ANNOTATE WITH TICKS AND CROSSES, etc <br> IGNORE sign <br> IGNORE sign <br> ALLOW ECF from wrong additions of energy associated with bond breaking and/or from bond making <br> ALLOW two marks for (+)162, (+)6870, -6870 or (+)766 <br> ALLOW one mark for -766 |
|  | (b) | (i) | Absorbs IR radiation $\checkmark$ <br> Bonds vibrate | 2 | IGNORE absorbs heat ALLOW IR re-radiated DO NOT ALLOW absorbs UV radiation DO NOT ALLOW blocks IR radiation <br> ALLOW bonds stretch OR bonds bend IGNORE molecule vibrates/rotates DO NOT ALLOW bonds break |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (b) | (ii) | Any two from: | 2 |  |
|  |  |  |  |  | DO NOT ALLOW reference to carbon being stored - the answer must either refer to carbon dioxide or not mention the name of the stored substance |
|  |  |  | (liquid) injected deep into the oceans $\checkmark$ |  | ALLOW store deep in the oceans OR on the sea-bed ALLOW stored deep under the sea DO NOT ALLOW dissolve $\mathrm{CO}_{2}$ in the sea OR stored in ocean |
|  |  |  | Stored in (old) geological formations OR stored underground in rocks OR stored in (old) mines OR stored in (old) oil wells $\checkmark$ |  | ALLOW stored under the sea bed ALLOW pumped into oil wells to force last bit of oil out |
|  |  |  | Stored by reaction with metal oxides <br> OR reaction to form (solid) carbonates <br> OR stored as a carbonate <br> OR equation to show formation of metal carbonate $\checkmark$ |  | IGNORE mineral storage |


| Question |  |  | Answer | Marks |
| :---: | :---: | :--- | :--- | :--- |
| $\mathbf{5}$ | (c) | (i) |  |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (c) | (ii) | Any two from: <br> More than one $\mathrm{C}-\mathrm{H}$ bond can be substituted OR multisubstitution can occur OR more than one substitution can happen <br> Lots of termination steps $\checkmark$ <br> termination steps can give products that will also react with (bromine) radicals $\checkmark$ | 2 | ALLOW equations or examples of multi substitution <br> ALLOW an equation to illustrate formation of other products eg butane <br> ALLOW examples of other products that can be formed in termination steps eg bromobutane <br> ALLOW examples of products eg butane reacting with bromine radicals to give bromobutane |
|  |  |  | Total | 16 |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (a) |  | 1-bromopentane reacts faster OR 1-chloropentane reacts slower $\checkmark$ <br> $\mathrm{C}-\mathrm{Cl}$ stronger bond (than $\mathrm{C}-\mathrm{Br}$ bond) <br> OR $\mathrm{C}-\mathrm{Cl}$ shorter bond (than $\mathrm{C}-\mathrm{Br}$ bond) <br> OR $\mathrm{C}-\mathrm{Cl}$ bond is harder to break <br> OR needs more energy to break $\mathrm{C}-\mathrm{Cl}$ bond <br> OR bond enthalpy of $\mathrm{C}-\mathrm{Cl}$ greater (than $\mathrm{C}-\mathrm{Br}$ bond) $\checkmark$ | 2 | ALLOW takes more time to react <br> ALLOW chloro compound reacts slower than bromine compound <br> DO NOT ALLOW bromine reacts faster than chlorine <br> ALLOW ORA <br> Answer must refer to the $\mathrm{C}-\mathrm{Cl}$ bond or $\mathrm{C}-\mathrm{Br}$ bonds |
|  | (b) | (i) | $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$    | 4 | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) n.b. $\mathrm{C}_{2} \mathrm{H}_{5}$ is unambiguous but $\mathrm{C}_{3} \mathrm{H}_{7}$ is ambiguous <br> IGNORE incorrect name <br> Mark incorrect answers first of all. <br> - One incorrect answers maximum 3 marks <br> - Two incorrect answers maximum 2 marks <br> - Three incorrect answers maximum 1 mark <br> - Four incorrect answers scores 0 mark <br> ALLOW as a slip one stick with no H on in a displayed formula |

Answer
Marks Guidance
6 (b)
IGNORE any structures drawn
DO NOT ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$

| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (b) | (iii) | infrared <br> 1700-1730 $\mathrm{cm}^{-1}$ indicates carbonyl group $\checkmark$ <br> broad $2900 \mathrm{~cm}^{-1}$ indicates $\mathrm{O}-\mathrm{H}$ bond AND it is a carboxylic acid $\checkmark$ <br> explanation mark <br> B has a branched structure because of relationship to methylpropene <br> OR <br> C has a branched structure because of relationship to methylpropene <br> OR <br> C must be a primary alcohol because it is oxidised to a carboxylic acid OR a primary alcohol because it reacts with acidified dichromate to make a carboxylic acid <br> OR <br> C cannot be a tertiary alcohol because it is oxidised OR cannot be a tertiary alcohol because it does react with acidified dichromate $\checkmark$ | 6 | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC <br> LOOK ON THE SPECTRUM for labeled absorbances which can be given credit <br> ALLOW has a $\mathrm{C}=\mathrm{O}$ bond because it has absorbance within range $1640-1750 \mathrm{~cm}^{-1}$ <br> ALLOW $2900 \mathrm{~cm}^{-1}$ indicates $\mathrm{O}-\mathrm{H}$ in carboxylic acid ALLOW has $\mathrm{O}-\mathrm{H}$ bond in carboxylic aid because it has absorbance within range $2500-3300 \mathrm{~cm}^{-1}$ The presence of carboxylic acid can be anywhere in the text including the structure for D <br> If two marking points from the explanation mark are given both must be correct |


| Question | Answer |  | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: |
|  | $B$ is <br> C is <br> D is | $\checkmark$ |  | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) <br> IGNORE incorrect names for B, C and D <br> Mark correct branched structures first of all. <br> If there are no correct branched structures and $\mathbf{C}$ is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ then ALLOW one mark for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and one mark for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$ |
|  |  | Total | 13 |  |

APPENDIX 1


OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU


Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553


